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Abstract—Gossiping models have increasingly been applied to
study social network phenomena. In this context, this paper
is specifically concerned with modeling how opinions of social
agents can be radicalized if the agents interact more strongly
with neighbors that share their beliefs. In our model, each agent’s
belief is represented by a vector of probabilities that a given
state is true. The agents average their opinions with that of their
neighbors over time, giving more weight to opinions that are
closer to their current beliefs. The increasing trust that may
exist among likeminded agents is modeled through a weight that
is a monotonically decreasing function of the distance in opinion.
We consider a continuous (soft) and a discontinuous (hard) model
for the weight and analyze the convergence properties.

I. INTRODUCTION

The concept of convergent social behavior or belief is a
well-documented feature of social phenomenon in a number
of diverse fields, ranging from herding [1] in economics and
finance to fad and trend [2] in social psychology and the
Bandwagon effect [3] in political science. The techniques
used to elucidate this phenomenon can be generally divided
into two classes, i.e., Bayesian models and non-Bayesian
models. Bayesian models [1], [2] describe individuals as
rational agents: opinions (or beliefs) of social agents are
probabilities of a given state, conditioned on all the available
information; individuals observe and update their beliefs using
Bayes rule. In many scenarios, the relevant information is
dispersed throughout a network; social agents only observe
a fraction of the total information, usually in the form of
their past experiences. When the information available to
an agent is not directly observable to others and agents do
not know the structure of the social network, it is highly
impractical to learn the state of nature in a Bayesian fashion. In
contrast, non-Bayesian models [4], [5], [6], [7], [8], [9] use a
simple and heuristic local updating rule to capture the opinion
dynamics over a complex network topology. For example,
in the Hegselmann-Krause model [7], [8], opinions (which
are represented by a real number) are updated synchronously,
as an average of all other opinions that differ from its own
by less than a confidence level ε. Other studies that have
investigated the effects of using simple pair-wise interactions
between neighboring agents whose opinions differ by less than
a threshold are [9] and [10]. Specifically, Deffuant et al. in
[9] model the network on a square grid: each agent can only

communicate with its four immediate neighbors. Weisbuch in
[10] extends this topology to a scale free network model.

In our previous work [11], [12], we have introduced a
model slightly more general than the HK model, to study
random gossiping type of interactions among social agents in
an arbitrary network. Interactions among pairs of these agents
occur at random. The opinion distance after the interaction
cannot be larger than the distance prior to the interaction. The
amount of change in opinion is proportional to the degree of
trust between agents and inversely proportional to the opinion
distance between agents. To characterize how different trust
models will effect the evolution of opinions in a society,
in [11], [12] we proposed two interaction models: a soft-
interaction model and a hard-interaction model. In the former,
trust always exists between two interacting agents, while in
the latter, trust only exists when the opinion distance between
agents is below a threshold. In this paper, we extend the
work in [11], [12] by analyzing the convergence properties
of the two interaction models, finding their local rates of
convergence. We prove that, under the soft-interaction model,
the average opinion distance and the average squared opinion
distance always converge at an exponential rate. Under the
hard-interaction model, we show that there exists a phase
transition from a society of radicalized opinions to one with
a consistent opinion at a critical opinion distance threshold.

II. MODEL

In our model, agents are treated as nodes V = {1, · · · , n}
in an undirected graph G = (V, E), where the edge set E
connects agents who are able to interact. Without loss of
generality, it is assumed that G is connected in the sense that
there exists a path joining directly or indirectly any two nodes
in V . The random interactions between agents are modeled
through a time-invariant vector p, describing the probability
of each agent initiating an interaction, and a stochastic matrix
P = [Pij ], specifying the probability that an initiator interacts
with one of its neighbors. Hence, the probability of the pair
(i, j) ∈ E interacting is P ij = piPij + pjPij . Moreover, [P ij ]
has the same sparsity structure as the graph G, that is, P ij > 0
if (i, j) ∈ E and P ij = 0 otherwise. This implies that each
edge in E is activated infinitely often.
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Here we recall the modeling assumptions introduced in [11].
Suppose that there are q possible outcomes of an experiment.
The opinion or belief of the ith agent is expressed as a q-
dimensional vector xi = [xi1, · · · , xin] in which xi` is the
probability that the `th outcome is believed to be true by
agent i. Hence, the belief space of dimension q is X =
{x|
∑q
`=1 x` = 1 and x` ∈ [0, 1]}. Since our interaction

models depend on the opinion distance between agents, we
define the distance metric d(xi,xj) : X × X 7→ R+ to be
a proper geometric distance. Thus, with respect to the norm
‖x‖ := d(x,0), the belief space X is bounded. Using the
triangular inequality, the distance d(xi,xj) ≤ 2 supi ‖xi‖ :=
dmax. For notational convenience, let dij [k] denote the dis-
tance d(xi[k],xj [k]) after k network-wide interactions have
occurred.

Recall that agents in the network interact at random. If trust
exists between interacting agents, then their beliefs will move
closer to each other. Formally, the degree of trust between
connected agents is captured by the function ρ(d) ∈ [0, 1

sup εk
]

according to the following nonlinear model:
(a1) dij [k + 1] = (1− εkρ(dij [k]))dij [k] , (1)

where the trust function
(a2) ρ(d) is a non-increasing function of d;

And for technical reasons, the step-size εk satisfies
(a3) εk :

∑∞
k=1 εk →∞ ,

∑∞
k=1 ε

2
k <∞.

As the system in (1) evolves, we say that consensus is achieved
when all the agents attain the same belief vector as measured
by the distance metric. More precisely, dij [k] = 0 for some
k and for ∀i, j ∈ V . In contrast, the society is said to exhibit
radicalized beliefs if the agents are divided into subgroups:
agents attain consensus within the subgroup; no subgroup has
influence on the other sub-groups’ beliefs.

Remark 1: The curious reader may be wondering how a
pair of interacting agents update their beliefs to reflect the
system in (1). Indeed, we have many choices. One simple
choice is to have the beliefs move closer to each other through
their shortest path. More precisely, let x′ denote a agent’s
belief after an update, then the displacement of the beliefs is
d(x′i,x

′
j) = d(xi,xj)− d(xi,x

′
i)− d(xj ,x

′
j).

III. ANALYSIS

This section studies in detail the asymptotic convergence
property of the system by first deriving an ordinary differential
equation (ODE) of the stochastic approximation of (1) as
follows: under (a3),

ḋij(t) = −ρ(dij(t))dij(t) , (2)

where ḋij denotes the derivative of dij with respect to a
continuous time variable t, replacing the discrete time variable
k. For convenient, the time variable t is not explicitly shown
in the rest of this section. Recall that P ij represents the
probability that the pair (i, j) ∈ E interacts. We can define an
averaged distance variable d over the edge set E as follows

d :=
∑

(i,j)∈E
P ijdij .

From (2), the ODE of the average belief distance d is

ḋ = −
∑

(i,j)∈E
P ijρ(dij)dij . (3)

Note that the convergence property of the above expression
depends on how the trust function ρ(d) is modeled and is
investigated in the following two sub-sections.

A. Soft-Interaction Model

As mentioned earlier, trust always exists between agents
under the soft-interaction model. Formally, we impose:

(a4) ρ(d) is C2-differentiable for ∀d ∈ (0, dmax);

(a5) limd→dmax ρ(d) = ρmin > 0;

(a6) ρ(d)d is concave for ∀d ∈ [0, dmax].

The following lemma as proved in [11] implies asymptotic
belief convergence.

Lemma 1: Under (a1) − (a6), ∃α ∈ (0, 12 ] such that the
dynamics of d is upper and lower bounded by

−ρ(d)d ≤ ḋ ≤ −αρ(d)d.

Because of the strictly positive condition imposed on ρ(d),
both the upper bound and lower bound systems have one and
only one stable equilibrium at d = 0 and thus (3) will always
converge to d = 0, implying that dij = 0 for ∀(i, j) ∈ E .
Since the network G is assumed to be connected, then for any
two agents `,m ∈ V , their opinion distance equals d`,m = 0,
as the opinion distances along any path joining the two nodes
` and m are zero. Therefore, the soft-interaction model always
lead to belief consensus.

Notice that since ρ(d) is differentiable, the rate of conver-
gence can be computed locally. In fact, the system locally
resembles the form of the logistic equation and the local rate
of convergence is exponential (See Corollary 1). Recall that
a system is said to converge exponentially to d∗ if ∃C, r > 0
such that |d(t)− d∗| ≤ Ce−rt|d(0)− d∗|. Note that d∗ = 0 in
our case.

Corollary 1: Let r(d) be the local rate of convergence in
the neighborhood of d. Under (a1) − (a6), ∃α ∈ (0, 12 ] such
that the local rate of converge is exponential and is bounded
by

α[ρ(d)− dρ̇(d)] ≤ r(d) ≤ ρ(d)− dρ̇(d).

Proof: See Appendix.
Lemma 1 and Corollary 1 imply that the average belief

distance between agents asymptotically approaches zero with
a rate that is locally exponential. We will prove next that the
average squared distance as expressed below also approaches
zero.

Define the average squared distance as

d2 :=
∑

(i,j)∈E
P ijd

2
ij .

Property 1: Under (a2) and (a6), the function g(a) =
ρ(
√
a)a is concave for ∀a ∈ [0, d2max].
Proof: See Appendix.

Using Property 1, the following lemma indicates that the
average squared distance in belief converges to zero.



Lemma 2: Under (a1) − (a6), ∃η ∈ (0, 12 ] such that the
dynamics of d2 is upper and lower bounded by

−2ρ
(√

d2
)
d2 ≤ ˙

d2 ≤ −ηρ
(√

d2
)
d2.

Proof: See Appendix.

Since ρ(
√
d2) is strictly positive, both the upper and lower

bound systems have only one equilibrium at d2 = 0. There-
fore, the average squared distance in belief will asymptotically
approach zero. Following a procedure similar to that in the
proof of Corollary 1, the rate of convergence can be computed
as stated below.

Corollary 2: Under (a1) − (a6), the local rate of conver-
gence in the neighborhood of d2 is exponential and is bounded
by

η
[
ρ(
√
d2)− d2ρ̇(

√
d2)
]
≤ r(d2) ≤ 2

[
ρ(
√
d2)− d2ρ̇(

√
d2)
]
.

In summary, as long as trust exists between any pair of
connected agents, as in the case of the soft-interaction model,
agents will keep updating their beliefs until consensus is at-
tained. On the other hand, the next sub-section investigates the
convergence property of the system under the hard-interaction
model.

B. Hard-Interaction Model

Recall that hard-interaction model describes the situation
in which agents only decide to trust their neighbors whose
opinions differ by less than a threshold. To be precise,

(a7) τ : d ≥ τ → ρ(d) = 0;

In addition, the following assumptions replace (a4)− (a6) of
the soft-interaction model.

(a8) ρ(d) is C2-differentiable for ∀d ∈ (0, τ);
(a9) ρ(0)/ρ(τ−) ≤ β <∞;
(a10) ρ(d)d is concave for ∀d ∈ [0, τ ].

Intuitively, if a society has a large threshold τ , i.e. is more
open-minded, it is possible that it will asymptotically attain
consensus. In contrast, if a society is close-minded with a small
value of τ , it will fail to converge and several opinion clusters
will emerge. Hence, the asymptotic belief profile varies with τ .
As the value of τ increases, a society may transition from one
with radicalized beliefs to a society with a consistent belief.
This suggests the existence of a phase transition. Indeed, the
following lemma as proved in [11] provides some insights on
how large τ needs to be for a society to reach consensus.

Lemma 3: Under (a1)−(a3) and (a7)−(a10), a necessary
condition for the system in (3) to converge almost surely is
τ > d(0).

However, the above condition is not sufficient. To show its
insufficiency, consider a society H: there are two groups H1

and H2 existing in H, i.e. H1∪H2 = H; dij = 0 if i and j are
in the same group; dij = τ+ε if i and j are in different groups.
When

∑
H1×H2

P ij <
τ
τ+ε , one can verify that d(0) < τ .

Hence, τ > d(0) is not a sufficient condition.

IV. SIMULATIONS

A. Soft-Interaction Model

Fig. 1 illustrates the evolution of a belief profile over time
under the soft-interaction model. Specifically, the underlying
network graph G consists of n = 100 agents randomly
distributed over an unit diameter disk and is generated using
a random geometric graph (RGG), i.e. G = G(n, r), with
radius of communication r = 0.6. Note that r = 1 implies a
fully connected RGG and r = 0 corresponds to a completely
disconnected network. The choice of RGG is arbitrary since
our analysis applies to any type of network topology. The
initial belief profile is uniformly distributed in X of dimension
3. The distance dij between agents’ beliefs is defined using
the L2 norm and thus dmax = 2 supi ‖xi‖2 = 2. Agents
update their beliefs through the shortest path connecting them
with a constant step-size εk = 1 and a trust function ρ(d) =
0.5 − 0.2d. This means that if agent i initiates an interaction
with agent j, then they will adjust their beliefs to d(xi,x

′
i) =

µ(dij)dij and d(xj ,x
′
j) = γ(dij)dij , respectively, where

µ(dij) +γ(dij) = ρ(dij). We use the uniform communication
scheme to model the rate of interaction between agents. Let
Ni be the set of neighbors of agent i. Uniform communication
corresponds to homogeneous rates pi = 1/n for ∀i ∈ V
with Pij = 1/|Ni| uniform across neighbors. As the system
evolves, the belief profile asymptotically converges a single
belief as seen from Fig. 1. Fig. 2 shows the convergence
rate of d (i.e., solid line) averaged over 300 trials. It is then
compared with its local upper bound and lower bound (i.e.,
dotted lines) around various values of d as derived in Corollary
1. Observe that the actual rate of convergence always lies in
between its analytical bounds. Fig. 3 shows two histograms of
300 belief profiles at time zero (left) and after the dynamics
have stabilized (right). Each belief profile is associated with a
randomly generated RGG.

Fig. 1. The evolution of a belief profile with time: each line segment
corresponds to a node and a segment terminates when a node interacts and
changes its belief.

B. Hard-Interaction Model

We ran a suite of 300 trials; each trial starts with an
uniformly distributed random initial belief profile in X of
dimension 3, over a randomly generated RGG similar to that
in the soft-interaction model. The trust function ρ(d) equals
1 if d < τ and 0 otherwise. The underlying communication
graph and updating rule are the same as in the soft-interaction
model. Networks of three sizes n = 50, 100, 200 were simu-
lated. We define the effective graph as Geff = (V, Eeff), with
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Eeff := {(i, j) ∈ E|dij [k] < τ} where k is sufficiently large.
Figure 3 shows the algebraic connectivity of the effective
graph; it is clear that the network converges with a probability
one if τ is sufficiently above d(0).
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C. Heterogeneous Model

It is also of interest to learn how a belief profile evolves
in a heterogeneous model, that is, one in which a fraction of
the population uses the hard-interaction model and the rest
uses the soft-interaction model. We want to investigate how
the critical threshold shifts as the number of agents using the
hard-interaction model decreases. Fig. 5 shows two simple

heterogeneous interaction models compared with the hard-
interaction model in a network of n = 50 agents. Specifically,
h represents the number of agents using the hard-interaction
model and s is the number of agents using the soft-interaction
model. One observes that, on average, as the society becomes
more open-minded (i.e. s increases and h decreases), the
critical threshold shifts down.
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Fig. 5. Heterogeneous Model

V. CONCLUSION

In this paper, we have extended the analysis of the conver-
gence properties of both the soft-interaction model and hard-
interaction model, which were originally proposed in [11].
Under the soft-interaction model, we have proved that the
average belief distance converges to zero; moreover, the aver-
age squared distance also converges. The rate of convergence
is locally exponential. Under the hard-interaction, we have
showed the existence of a phase transition from radicalized
beliefs to a consistent belief at a critical threshold τ , which is
closely related to the averaged initial belief distance.

VI. APPENDIX: PROOFS

Corollary 1: Suppose that d(t+ s) is in a neighborhood of
d(t) provided that s is small. Hence, Taylor’s expansion gives
ρ
(
d(t+ s)

)
≈ ρ

(
d(t)

)
+
[
d(t+ s)− d(t)

]
ρ̇
(
d(t)

)
, where

ρ̇(d) = dρ/dd. Since ρ̇ (d(t)) ≤ 0 given (a2), the upper bound
system ḋ(t+ s) ≤ −αρ(d(t+ s))d(t+ s) becomes

ḋ(t+ s) ≤
{
−αρ(d(t))d(t+ s) if ρ̇

(
d(t)

)
= 0;

−αf(s; t) if ρ̇
(
d(t)

)
< 0.

where f(s; t) =
[
ρ
(
d(t)

)
− d(t)ρ̇

(
d(t)

) (
1− d(t+s)

d(t)

)]
d(t+

s). In the first case, ρ(d(t)) is locally constant and hence, the
local rate of convergence around d(t) is exponential and is
lower bounded by r(d(t)) ≥ αρ (b(t)). In the second case,
define ξ(s; t) := d(t+ s)/d(t). The dynamics of ξ become

ξ̇(s; t) =
ḋ(t+ s)

d(t)
≤ −αR(t)ξ(s; t)

(
1− ξ(s; t)

K(t)

)
(4)

where R(t) = ρ
(
d(t)

)
− d(t)ρ̇

(
d(t)

)
and K(t) = 1 +

ρ(d(t))
−d(t)ρ̇(d(t))

> 1. Note that the dynamics on ξ resemble the

logistic equation. Provided that ξ(0; t) = 1 and R(t) 6= 0, the
solution to (4) is

ξ(s; t) ≤ K(t)e−R(t)s

K(t)− 1 + e−R(t)s

s↑
≈
(

K(t)

K(t)− 1

)
e−αR(t)s,



where αR(t) is the rate of convergence of the upper bound sys-
tem. Combining the results from both cases yields r

(
d(t)

)
≥

αR(t). Similarly, using the lower bound system ḋ(t) ≥
−ρ(d(t))d(t), one can also find an upper bound on the rate
of convergence around d(t), that is, r

(
d(t)

)
≤ R(t).

Property 1: g(a) is concave if its second derivative is
negative. Taking the first derivative of g(a) yields ġ(a) =

ρ (
√
a) +

√
a
2 ρ̇ (
√
a). Taking the second derivative yields

g̈(a) =
ρ̈ (
√
a)
√
a+ 2ρ̇ (

√
a)

4
√
a

+
ρ̇ (
√
a)

4
√
a

. (5)

(a6) implies that the second derivative of ρ(d)d is negative,
i.e., ρ̈(d)d + 2ρ̇(d) < 0 for ∀d ∈ [0, dmax]. Let a = d2, then
for ∀a ∈ [0, d2max], the first term in (5) is negative. Moreover,
ρ̇ (
√
a) ≤ 0 from (a2). Hence, g̈(a) < 0 and g(a) is concave.

Lemma 2: From (a1), we have

d2ij [k+1]−d2ij [k] = −2εkρ(dij [k])d2ij [k]+ε2kρ
2(dij [k])d2ij [k].

Since ρ(d) ≤ 1
sup εk

≤ 1
εk

for ∀d ∈ [0, dmax], then
εkρ(dij [k]) ≤ 1 and thus

−2εkρ(dij [k])d2ij [k] ≤ d2ij [k+1]−d2ij [k] ≤ −εkρ(dij [k])d2ij [k].

Stochastic approximation implies that

−2
∑

(i,j)∈E

P ijρ(dij)d
2
ij ≤

˙
d2 ≤ −

∑
(i,j)∈E

P ijρ(dij)d
2
ij . (6)

Let aij = d2ij and a :=
∑

(i,j)∈E P ijaij . Hence, a = d2.
Using Property 1 and Jensen’s inequality, we get∑

(i,j)∈E
P ijρ(

√
aij)aij ≤ ρ

(√
a
)
a = ρ

(√
d2
)
d2 . (7)

Hence, ˙
d2 is lower bounded by ˙

d2 ≥ −2ρ
(√

d2
)
d2.

To prove the upper bound, let S = {(`,m) ∈ Ec|d2`m ≤
d2}, Sc = {(i, j) ∈ Ec|d2ij > d2} s.t. S ∪ Sc =

Ec. From (6), ˙
d2 ≤ fc(d2) := −

∑
(i,j)∈Sc P ijρ(dij)d2

and ˙̄d ≤ f(d2) := −
∑

(`,m)∈S P `mρ(
√
d2)d2`m =

−
(
d2 −

∑
(i,j)∈ScP ijd

2
ij

)
ρ(
√
d2). A weighted sum yields

˙̄d ≤ ηf(
√
d2)+(1−η)fc(

√
d2) = −ηρ(

√
d2)d2−g(d2), (8)

where g(d2) =
∑

(i,j)∈ScP ij

[
(1− η)ρ(dij)d2 − ηρ(

√
d2)d2ij

]
.

The term g(d2) will vanish if η = 1
1+θ , where

θ =
∑

(i,j)∈Sc P ijd
2
ijρ(
√
d2)∑

(i,j)∈Sc P ijρ(dij)d2
≥ 1 because for ∀(i, j) ∈ Sc,

d2ij > d2 and ρ(
√
d2) ≥ ρ(dij). Moreover, by (a5),

θ ≤ ρ(
√
d2)∑

(i,j)∈Sc P ijρ(dij)
< ∞. Therefore, ∃η ∈

(
0, 12
]

such

that ˙
d2 is upper bounded by ˙

d2 ≤ −ηρ(
√
d2)d2.
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